

1

HTML ESSENTIALS. Copyright © 2023 by Ian Cheung. All rights reserved.

This work is intended for educational purposes, and I hereby grant permission for it to be copied,
photocopied, or utilized in a manner that aligns with educational endeavors. The content within this
work may be reproduced for educational use, provided that it is not for commercial purposes, the
integrity of the material is maintained, and proper attribution is given to the original source. This
permission extends solely to educational contexts and does not imply authorization for any other form
of reproduction, distribution, or utilization in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner. By using or reproducing this book, you acknowledge
and agree to comply with the conditions outlined in this disclaimer.

June 2023 1st edition

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, the author shall not have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in it.

Foreword

I extend my sincere gratitude to each and every one of you for choosing to embark on this exciting
journey with me through the pages of my book. As an author committed to delivering a polished and
�awless reading experience, I am aware that even with rigorous editing and proofreading processes,
occasional typos and inconsistencies can evade detection.

Should you encounter any typographical errors, inconsistencies, or other issues within the pages of this
book, I humbly request your kind assistance in bringing them to my attention. Your feedback will aid
me in rectifying these matters promptly and e�ectively. You may reach me directly via email at
iancheung.goodtime@gmail.com. Your feedback will aid me in rectifying these matters promptly and
will be deeploy appreciated. Thank you for your support, and I wish you continued enjoyment as you
delve further into the chapters that lie ahead.

Now, let’s begin our journey in the world of coding!

mailto:iancheung.goodtime@gmail.com

ToDad,
for the computers you bought.

ToMom,
for your guidance and patience.

Introduction

Could you even imagine a future where the fate of humanity rests upon the lines of code written by a
few individuals? Indeed, this scenario might unlikely happen, but learning how to code does empower
you to technology that have the potential to revoluntarize society. In fact, coding actually emerges as
one of the best careers in the 21st century. In terms of job growth, the tech industry is one of the best
and the need for coders is still on the rise consistently. Plus, coding jobs o�er a high average salary
compared to other industries and many of them are remote, meaning you only need a computer and an
Internet connection to work from home. Since they require specialized skills and are in high demand,
computer coding salaries often range from $60,000 to over $100,000 a year.

Fun fact: you actually don’t necessarily need to be coder in the programming sector – half of all
programming opportunities are located in industries outside of technology, including �nance,
manufacturing, or healthcare. Obtaining these specialized skills, unlike other traditional professions,
does not even require years of study or an elusive degree – the vast amount of resources both online
and o�ine has made learning coding more accessible than ever before. Even if you don’t pursue coding
as your professional career, it can still grant you the power to create an online presence, design a
portfolio for your professional career, and even generate a lucrative side income by developing
groundbreaking applications. The possibilities are simply endless. What are you even waiting for?

One very important sector in computer programming is web design. According to Siteefy, a website
hosting company, there are roughly around 1.13 billion websites on the Internet, with an estimation of
10,500 new websites created every hour. Without a doubt, web design is full of creativity, fun,
progression, and skill. It is an ever-evolving subject that is hugely satisfying to learn and master. Every
day I wake up with a ravening thirst, driven by a relentless desire to re�ne my skill set to develop better
websites over time. Learning how to develop websites goes beyond understanding how to write code. It
develops me as a person and teaches me how to think independently, solve problems, be resilient in the
face of seemingly impossible challenges. Steve Jobs once famously said, “I think everybody in this
country should learn how to program a computer because it teaches you how to think.” That is a �nal
and essential bene�t – learning code forces you to approach problems logically and analytically, asking
the right questions and testing your solutions to see if they work. And that is a skill that will bene�t
you in all aspects of your life.

Once you have �nished working your way through the long journey of these pages, you will �nd that
you will look at websites in a completely di�erent way, such as “That’s easy”, or, “I know how to do
that!”. Web design is immensely satisfying and is an industry full of developers who don’t just love
what they do, they live and breathe in it. If you work your way through this book, I can guarantee that
you too will love programming and all of its quirks.

This book aims to challenge you – possibly in ways you’ve probably never been challenged before. It
will also require you to think in ways you de�nitely haven’t thought about before. At times when it
turns out to be di�cult or when you are frustrated, don’t feel down! Continue your journey, accept
the challenges, and overcome them with patience and resilience. Now, if you are ready, let’s enter the
world of code! Welcome!

Who am I?

Before I continue with web design, I would like introduce you to myself. I am currently a high school
student. I was born in Hong Kong, a special administrative region in China, and now reside in the San
Francisco Bay Area. Like many other people, the onset of the pandemic and the shift to online
schooling prompted my interest in coding. Recognizing that my routine had been severely disrupted, I
felt compelled to acquire a new skill set, particularly with the abundance of free time available due to
online schooling. As such, I began dedicating my evenings and weekends to constructing (very poorly
made) websites.

Having had exposure to coding Scratch and Micro:bit at school since a young age, I had never
considered coding to be something I would greatly pursue, but instead something on the side as a
hobby. However, the aspects of being a developer became more intriguing over time, most notably the
ability to create a product I or someone could actually use, and that made me feel passionate about
what I was doing. With a solid foundation in computer programming and dedication to developing a
career path and expanding my experience in this dynamic sector, I hope to share my passion for
technology and coding with other people. And that’s how this book came to be.

What coding is

For individuals who haven't delved into the world of programming, coding can appear as a mysterious
art form. The legendary "coder" is often depicted as someone wearing headphones, listening to
electronic music, while simultaneously commanding a computer to ful�ll their desires. However, in
reality, the entire process is way simpler than that.

To put it simply, coding involves writing lines of code that instruct a computer to perform speci�c
tasks. At its core, computers process information by utilizing a binary system, where a series of 1s and
0s represent "on" (true) and "o�" (false) states, respectively. In the early days of computing, interacting
with a computer meant manually inputting streams of 1s and 0s, which was far from practical
nowadays. As a result, computer languages were gradually developed, enabling far more convenient
communication between humans and computers.

Similar to human languages like English or Spanish, computer languages have speci�c commands
(words) and syntax (punctuation) so that both humans and computers can comprehend. However,
computer languages are absolutely precise and unambiguous. One single misspelled word or a
forgotten comma can cause the entire program to fail. But then, this meticulousness and unambiguity
ensure that if you write the right code the computer will do exactly what you want as intended.

But I can control a computer without coding

Well, you might be wondering, ‘But I can do everything I need to do with my computer without
needing to enter a single line of code.’ Indeed! Over the past few decades or so, highly user-friendly
operating systems such as Windows, macOS, Android, and iOS have been developed, and the need to
write code to control a computer is virtually eliminated. Thanks to these advanced Graphical User
Interfaces (GUI), everyone can approach a computer and start using it right away without any prior
knowledge. This has undoubtedly been such a huge step forward in the usability of computing, but it
also means that many people may not realize the immense power that they possess when they go
beyond everyday software like Microsoft Word and Google Chrome.

Just so you know, every piece of software or hardware you use has been created through coding. Each
time you instruct Siri or perform a search on Google, a whopping amount of several thousand or even
million lines of code are executed to simply provide you with a short answer or to show you the search
results. There is no magic behind this: it is simply the result of the hard work by thousands of
developers, and billions of transistors doing what they are being told in those lines of code.

Learning to code grants you complete power over these transistors, such as by creating your
personalized website or automating daily and tedious processes to help improve your productivity.
Coding is pretty much like a supernatural power, and in that, it enables you to use equipment like
laptops and smartphones you already own in a whole new way.

The Key Principles by which the World Wide Web functions

Before we begin delving into the process of building websites, it's very important to comprehend the
landscape in which a website functions. In the following section, you will gain a clear understanding of
what we mean when we refer to the WorldWideWeb. We will then investigate what speci�cally occurs
whenever you visit a web page and how the web page is delivered to you. After that, I will teach you
about the fundamental tools utilized in modern web design, providing examples of them that are
widely embraced by modern web developers. While there is no shortage of tools and software that a
web developer can use, only a few resources are actually required to get your website up and running.

The Internet

The Internet is a worldwide network that links devices together. Within this network, numerous other
networks connect billions of devices located in di�erent parts of the world. The devices on this
network can communicate with each other and share information using various languages called
protocols.

TheWorldWideWeb (www)

The World Wide Web, also known as the web, is a way to get information from the Internet using a
protocol called HTTP, which stands for Hypertext Transfer Protocol. It is a platform for sharing
information such as websites and �les in the Internet itself. HTTP is just one of the many protocols
used on the Internet. Another example is SMTP, which is used for sending emails.

Web pages

Web pages are �les that are created by using HTML (Hypertext Markup Language). They are saved
and uploaded to a web server.

Browsers

A browser is a software program that can understand and showHTML �les to the user, allowing them
to see and potentially interact with them. The most popular browsers nowadays are Firefox, Google
Chrome, Internet Explorer, Brave, Opera, and Safari.

Servers

A server is simply a computer connected to a network, designated to solely provide web pages or �les to
other devices on the network upon request. Servers are discoverable via IP addresses.

Domains

A domain acts similarly to an address or a postcode. It tells the browser where to look for a �le.
Essentially, a domain name is a name for a server on the network. Anything after the forward slash tells
the browser which �les on that server you are looking for. You can buy domain names on di�erent
platforms such as GoDaddy (https://godaddy.com/), but it can be costly.

https://godaddy.com/

Subdomains

A subdomain is used to divide your website into smaller sections. They are useful for organizing and
structuring a website. It can also potentially contribute to distributing tra�c and load balancing when
handling high request volumes.

URLs

A Uniform Resource Locator (URL) refers to a speci�c network location that stores a particular
resource. This resource can be in various forms, such as a web page (.html), an image (.png), or a video
(.mp4). Generally, a typical URL can be constructed using the following segments:

DNS

A Domain Name System (DNS) functions as a network of servers that are tasked with the
responsibility of retrieving the IP address associated with a speci�ed domain. They operate a phone
book, where you provide the DNS with a domain name, and it in turn provides you with the
corresponding IP address of the server, hence the website you wish to access.

Putting it all together

Let’s again walk through the steps involved when you visit a web page through your browser:

1. A user enters a URL into the browser (e.g., www.example.com).
2. The browser queries the DNS server to look up the domain name.
3. The DNS server provides the browser with the IP address associated with the domain.
4. Using the obtained IP address, the browser sends a request to that server for the �les.
5. The server processes the request and sends back the requested �les to the browser.
6. The browser receives the �les from the server.
7. Finally, the browser renders and displays the contents of the �les to the user, presenting the

web page on the screen.

http://www.example.com

The tools of web design

Text editor

A website is created using various text-based languages, including HTML, CSS (Cascading Style
Sheets), and JavaScript.

To write these languages and have them interpreted by the computer, a text editor is required. While it
is technically possible to write a website using a basic text editor like Notepad, it is not ideal for web
design because it lacks the advanced features provided by specialized text editors speci�cally designed
for programming.

Throughout this book, we will be using Visual Studio Code as our text editor (you can download it
from https://code.visualstudio.com/download). While there are countless alternatives available out
there, Visual Studio Code is currently the most popular text editor among modern developers. I
strongly recommend using it for the duration of this book in order to familiarize yourself with the
basic functionality of text editors. After that, you can apply this knowledge to any other plugin-based
text editor you choose to use in the future.

Browser

Simply put, web browsers are responsible for presenting websites visually to the user. Without them,
all the code we write will remain as code. Indeed, while regular computer users will be happy with any
modern browser, web developers have additional considerations when selecting a browser. During the
website development process, we especially need e�ective tools for debugging and inspecting our code.

Each modern web browser o�ers a mode speci�cally designed for debugging websites, often referred to
as "inspector tools." These tools allow developers to e�ectively identify and �x issues on the web page
within the browser. As a result, the availability and quality of these debugging features greatly
in�uence a web developer's choice of browser.

Among the widely adopted browsers, Google Chrome stands out as the preferred option for both
regular users and web developers. Chrome provides an exceptional set of developer tools that prove
invaluable in modern web development.

It's worth noting that each browser has its settings and standards for displaying web content. Hence, a
website may appear di�erently across di�erent browsers. To ensure our websites render correctly, it is
essential to install and test them on the many popular web browsers currently in use.

https://code.visualstudio.com/download

Currently, some most popular web browsers, as mentioned before, are:

● Google Chrome
● Safari
● Firefox
● Opera
● Internet Explorer
● Brave

If you are using a Mac, installing Internet Explorer as a native app is not possible because it is designed
for Windows operating systems. Although it is not necessary to have Internet Explorer installed to
follow the content of this book, in real-world scenarios, you will still need to test your website
compatibility with Internet Explorer. To accomplish this, one commonly used approach is to utilize
the Remote Desktop application and virtual machines. You can �nd out more in the following link:
https://docs.microsoft.com/en-gb/archive/blogs/ie/announcing-remoteie-test-the-latest-ie-on-window
s-mac-os-x-ios-and-android.

Image editor (optional)

The modern web is predominantly focused on visual content. In the past, websites had to be cautious
with the usage of images due to concerns about slow web page loading speeds. However, thanks to
signi�cant advancements in internet speed over the last decade, websites can now incorporate a
substantial amount of media without compromising page loading times. Nowadays, it has become
essential to possess the ability to create and manipulate media for optimal use on our websites.

One of the key tools for a modern web developer is an image editor. Although you can obviously use
default image editors on Windows and macOS to edit, crop, or resize photos, I recommend you install
a professional image editor if you are serious about web design. You can gain much more control over
the media to create better-looking websites.

While free options for professional image editors are limited, they do exist. GIMP, for instance, is a
cross-platform image editor that is more than capable of ful�lling the requirements for image
manipulation in web design. Adobe Photoshop, a very popular choice among web developers and
professional graphics designers for many years now, has exceptional image optimization and editing
capabilities. With Photoshop, it becomes easier to create graphics tailored for your websites. A free trial
of Photoshop is available at the time of writing this book, allowing users to test the software for 7 days.

https://docs.microsoft.com/en-gb/archive/blogs/ie/announcing-remoteie-test-the-latest-ie-on-windows-mac-os-x-ios-and-android
https://docs.microsoft.com/en-gb/archive/blogs/ie/announcing-remoteie-test-the-latest-ie-on-windows-mac-os-x-ios-and-android

What is HTML?

HTML stands for Hypertext Markup Language and serves as the foundation for constructing
websites. The term "Hypertext" highlights the key characteristic of HTML, which allows the inclusion
of links to other HTML pages, exemplifying the fundamental concept that underlies the web.

HTML originated from the e�orts of Tim Berners-Lee in the late 1980s during his work on what we
now refer to as the Internet. Initially, Berners-Lee developed HTML as a means of organizing his
personal notes but soon recognized the potential for sharing documents with a wider audience. As the
web grew, this remarkably e�ective language led to its adoption by others for implementing text
formatting, images, and hyperlinks.

What software do I need?

Throughout the entirety of this book, you only need two software applications ready, namely a text
editor and a browser (preferably Chrome). These tools enable you to generate and modify code in any
programming language, as well as visualize your creations.

While you have the freedom to choose any text editor, I strongly suggest obtaining Visual Studio Code
from https://code.visualstudio.com/download as it is free and open-source. It is compatible with
Windows, Mac, and Linux operating systems. It will also automatically enhance the readability of your
code by employing syntax highlighting and proper indentation, making the process of writing HTML
much more enjoyable and relieving you from the burden of manually typing each character.

https://code.visualstudio.com/download

I’ve downloaded “VS Code” - what now?

Upon encountering a series of con�gurations, you will likely be presented with a welcoming interface.
Let’s begin by promptly creating a new �le.

The beginning of a blank document

It’s very awkward as there is nothing to see yet. Luckily, VS Code provides a convenient solution. Begin
by clicking on "Select a language" and search for HTML. Proceed by selecting the HTML option.

Upon completion, it is recommended to save your initial (blank) �le. You have the freedom to choose
any desired destination, but make sure you can easily locate the �le within your File Explorer/Finder.

After that, an HTML document should be generated on your computer. Locate the previously saved
document within your File Explorer/Finder and proceed to open it using your web browser.

As expected, the document will appear blank as no code has been written thus far.

Now, let's get right into it. After saving our �le as an HTML document, we can dive into writing our
HTML code. And what could be a better way to kickstart our HTML code than by using the
<!DOCTYPE html> declaration and a <html> tag?

Example:

<!DOCTYPE html>

<html>

</html>

Within these <html> tags, we will nest all of our HTML code. These tags serve as markers, de�ning the
beginning and end of the HTML code section. In reality, the presence of the <!DOCTYPE html>
declaration is not 100% mandatory. However, omitting it may occasionally lead to errors, particularly
when the browser encounters di�culties interpreting the �le correctly. Although the occurrence of
such errors is very rare, I strongly advise including this declaration in every HTML document to
ensure optimal compatibility and reliability.

The <head> tag

First, let's utilize the <head> tag. This tag serves the purpose of including the metadata of our web
page. Within this section, we can provide essential information that is not directly visible on the web
page itself but rather assists the browser in understanding the functionality and structure of our web
page.

Example:

<!DOCTYPE html>

<html>

<head>

</head>

</html>

The Page Title

Now, let’s add a <title> tag within the <head> tag. As you guessed it, the <title> tag is used to give the
web page a title. This title is what will be displayed on the tab in the browser for your web page.

Example:

<!DOCTYPE html>

<html>

<head>

<title>My First Webpage</title>

</head>

</html>

In the <head> tag, along with the <title> element, we also include various metadata. Metadata is
additional information that helps con�gure the settings of the HTML document but does not appear
visibly within the web page content. Some metadata examples include details such as the author of the
web page, the generator used to create it, and other relevant information. Let’s discuss one of the most
commonly used metadata:

<meta charset="utf-8">

One metadata that is typically included in most HTML documents is the character set declaration,
often set to "UTF-8". "UTF-8" stands for "Unicode Transformation Format 8-bit" and is the most
widely employed encoding scheme for representing Unicode characters. This can ensure compatibility
for displaying a diverse range of characters and symbols correctly on our web page.

<!DOCTYPE html>

<html>

<head>

<title>My First Webpage</title>

<link href="favicon.png" rel="icon">

<meta name="author" content="John">

<meta name="description" content="This is a detailed long description of

the web page.">

<meta name="generator" content="Visual Studio Code">

<meta name="keywords" content="portfolio, art, graphics, designer">

<meta http-equiv="content-type" content="text/html">

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

</head>

</html>

Here are what the meta tags mean respectively in order, under the <title> tag.
1. This sets the browser tab’s icon to be “favicon.png”.
2. This states that the author of this HTML document is “John”.
3. The description provides a concise summary or description of your web page's content. Search

engines often display this description in the search results, letting users a glimpse of what they
can expect when they visit your web page. For example:

4. This states that the text editor you use is “Visual Studio Code”.
5. This states that the web page’s keywords are “portfolio, art, graphics, designer”. This can help

you improve your rank in those keywords in Google search results. You may use commas (,) to
separate multiple keywords.

6. This states that this document is a text-based HTML document.
7. This states that this document uses UTF-8 encoding.
8. This sets the viewport to ensure that your website looks great on all devices, regardless of their

screen size or resolution.
a. “width=device-width” sets the width of the page as the screen width of the device.
b. “initial-scale=1.0” sets the initial zoom level when the page is �rst loaded.

While many of these tags only become relevant when your web page is uploaded to a web server and
made available online, it's still essential to familiarize yourself with them before doing so.

The <body> tag

Moving on, after the <head> tag, we will now introduce the <body> tag. This tag signi�es the
beginning and end of the visible content within the HTML document. Inside the <body> tag, we will
include the actual content of our web page, such as text, images, and other elements that will be visible
to the users.

Example:

<!DOCTYPE html>

<html>

<head>

<title>My First Webpage</title>

<meta charset="utf-8">

</head>

<body>

<!-- Page content -->

</body>

</html>

Comments

Comments play a very crucial role in programming as they allow developers to explain speci�c parts of
the code using languages that other people can understand. In HTML, comments are enclosed within
special tags that distinguish them as non-executable code. This means that they are completely ignored
by the browser as if they were not present and have no impact on the web page's functionality. The
example <!-- Page content --> in the above example is already an illustration of a comment in HTML.
To include a comment in HTML code, you can begin the comment with <!-- and conclude it with -->.
Comments can also span through multiple lines in HTMLwith the same syntax. They are particularly
valuable when collaborating with other developers, as they provide clarity and understanding when
other people are reviewing your code. Now, let's dive deeper into exploring actual HTML elements!

Header Tags

HTML header tags are used to indicate to the browser the hierarchical structure and importance of
header text within a web page. These tags enable the browser to understand which text holds greater
signi�cance and how it should be treated. Writing header tags is straightforward as they are de�ned
using tags from <h1> to <h6>. The <h1> tag represents the highest level of importance for header
text, while the <h6> tag denotes the least important level of header text.

Example:

<!DOCTYPE html>

<html>

<head>

<title>Ian's Webpage</title>

<meta charset="utf-8">

</head>

<body>

<h1>This is a header</h1>

<h2>This is a subheader</h2>

</body>

</html>

These header tags are particularly useful for displaying larger text to users with emphasis. Although the
visual appearance of these tags can vary across di�erent browsers, like any other HTML tags, there is a
general convention regarding their font sizes. Typically, the <h1> tag is rendered as the largest, while
the <h6> tag is rendered as the smallest. Occasionally, the <h5> and <h6> tags may appear with the
same font size as the <p> tag (which we will discuss later). However, these smaller header tags are
commonly utilized for better categorizing and organizing di�erent sections of text within a web page.

Paragraph Tags

For non-header text content, we have the humble yet powerful <p> tag, which stands for paragraph.
Unlike header tags, the paragraph tag has only a single level. Enclosing text within the <p> tags signi�es
a paragraph of text that should appear as a block of continuous content, starting on a new line. You can
use multiple <p> tags to indicate separate paragraphs, allowing for a clearer and more organized
presentation of textual content.

Example:

<!DOCTYPE html>

<html>

<head>

<title>Ian's Webpage</title>

<meta charset="utf-8">

</head>

<body>

<h1>This is a header</h1>

<p>A paragraph under the h1 tag</p>

<h2>This is a subheader</h2>

<p>A paragraph under the h2 tag</p>

</body>

</html>

Whitespace collapsing

There is something that you need to be aware of when coding a HTML document, and that is the
concept known as "whitespace collapsing.” Essentially, when you write multiple lines of code without
utilizing tags to separate them, or when the browser encounters consecutive whitespace characters
(such as spaces or line breaks in your code), it consolidates them into one single space. As a result, the
browser will render the lines of code without any visible line breaks or multiple spaces.

To prevent the collapse of whitespace and preserve the formatting of text, we can utilize the <pre> tag.
This tag is speci�cally designed to enclose preformatted text, ensuring that all whitespace, line breaks,
and indentation are maintained exactly as they appear in the HTML code. The browser will also
render the enclosed text in a monospaced font.

Example:

<!DOCTYPE html>

<html>

<head>

<title>Ian's Webpage</title>

<meta charset="utf-8">

</head>

<body>

Hello world!

Merry Christmas!

<pre>

I can do whatever I want!

Even with multiple spaces! Nice!

</pre>

</body>

</html>

Inline elements

Now that we have successfully printed some texts on our web page, here are some of the tags that can
used to format texts inline:

HTML Tag E�ect

 or Renders text in bold

 or <i> Renders text in italics

<u> Underlines text

<sup> Renders text as superscript (appearing above normal text)

<sub> Renders text as subscript (appearing below normal text)

 or <s> Strikes through text

<ins> Displays inserted text, often shown as underlined

<mark> Highlights text

<q> Wraps “quotation marks” around the enclosed words

<cite> Indicates a source, such as an author, book name, or website (usually
displayed in italics by the browser)

<small> Renders text in smaller font size, typically used for remarks or disclaimers

<var> Displays variables in mathematical formulas (usually displayed in italics)

<bdo dir="rtl"> Overrides the noitcerid txet (text direction) to right-to-left (rtl)

<address> Represents contact information (usually displayed in italics with a line break
before and after the element)

<abbr title="Title"> Represents a short form of a word, with the option to provide a title for the
full form of the word that appears when the user hover on the element

<kbd> Displays user inputs, such as keyboard shortcuts or commands

<samp> Displays computer output, for example, output from a computer system

<code> Renders computer code text

The following are some examples on some inline formatting elements and the corresponding output:

<!DOCTYPE html>

<html>

<head>

<title>Ian's Webpage</title>

<meta charset="utf-8">

</head>

<body>

<p>I am very handsome</p>

<p><var>a² + b² = c²</var>

<i>(Pythagorean Theorem)</i></p>

</body>

</html>

Line break -
 tag

The
 tag is a special tag - it denotes a line break. Practically you can use the
 tag anywhere,
such as in between two tags, or even within tags. Its purpose is to create a visual separation within the
content, which results in the subsequent content to appear on a new line. Unlike most HTML tags,
the
 tag does not require a separate closing tag. It is classi�ed as an "empty HTML element" as it
technically does not contain any content.

Example:

<!DOCTYPE html>

<html>

<head>

<title>Ian's Webpage</title>

<meta charset="utf-8">

</head>

<body>

Hey there!

Welcome to my page!

<p>Enjoy surfing
 through my website!</p>

</body>

</html>

Notice the spacing di�erence between the
 (between “Hey there!” and “Welcome to my page!”)
and <p> (between “Welcome to my page!” and “Enjoy sur�ng”) tags, both of which facilitate the
display of subsequent content on a new line. The
 tag does not create any additional spacing
between the lines of text, while the <p> tag automatically creates both a line break and additional
spacing before and after the paragraph. This spacing gives a visual distinction between paragraphs and
helps improve readability.

The <hr> tag

Similar to the
 tag, the <hr> tag is also really simple. It simply denotes a straight horizontal line
across the web page. Let’s take a look at this example:

Example:

<!DOCTYPE html>

<html>

<head>

<title>Ian's Webpage</title>

<meta charset="utf-8">

</head>

<body>

<h1>Section 1 (English)</h1>

<p>This section is about English!</p>

<hr>

<h1>Section 2 (French)</h1>

<p>This section is about French</p>

</body>

</html>

Hyperlinks

A link tag is formatted using a <a> tag, with the following syntax:

Visit my website!

The href attribute speci�es the URL of the desired
destination. The text enclosed between the opening
and closing <a> tags represents the visible text that
will be displayed as the link. In the given example,
clicking on the text "Visit my Website!" would
redirect you to the destination URL speci�ed as
https://example.com.

Link formatting

Absolute URLs

An absolute URL refers to a speci�c resource that can exist on any location within the web. This type
of URL allows you to link to content located on a completely di�erent website. To use an absolute
URL, you must format it with the complete web address of the desired destination resource. For
instance, https://www.google.com is an absolute URL that directs you speci�cally to the Google home
page. This allows users to access external web resources and navigate across di�erent websites on the
internet.

Relative URL

In contrast to absolute URLs, a relative URL refers to a resource that is on the samewebsite or server.
It represents a local link within the website. Since relative URLs are referenced from the current
document, they require providing a path relative to the current document's location. For instance, if
the desired �le is an HTML �le located in the same folder as the current web page, such as when both
�les are on the Desktop, the URL can be simply formatted as "example�le.html" without a problem.

To navigate down one directory within the �le structure, you can use the forward slash ("/") as a
separator. For instance, the URL "images/�le.html" refers to the �le.html located within the "images"
folder, which exists in the same directory as the current document. You can navigate into as many
folders as you like, for example: “assets/images/dog/sel�e.png”.

https://example.com
https://www.google.com

On the other hand, to move one directory level up in the �le structure, you can use the "../" notation.
For example, the URL "../../�le.html" signi�es that the desired �le.html is located two directory levels
above the current document. This notation allows you to access resources in parent directories.

It is generally considered a best practice to utilize relative paths whenever possible. For instance, the
BBC website employs relative links for linking between articles since they exist on the same website and
server. Relative URLs simplify navigation within a website's internal resources.

Example: (Same website: bbc.com; di�erence: the �le path after “/news/”)
https://bbc.com/news/world-us-canada-53788883
https://bbc.com/news/election-us-2020-53782331

Target attribute

When creating a hyperlink, you can include a "target" attribute to specify how you want the browser to
handle the opening of the link. One of the most frequently used options for the target attribute is
"_blank". This option instructs the browser to open the linked page or resource in a new browser tab
or window, separate from the current page. Here is an example of using the "_blank" target attribute:

Visit my website!

By default, if you do not specify a target attribute for a hyperlink, the browser assumes the target as
"_self". This means that when the link is clicked, the linked page or resource will open within the same
tab that the link was clicked in. Here are some examples that either explicitly use or imply the usage of
the "_self" target attribute, but all perform the same action:

Visit my website!

Visit my website!

Mail-to Function

Some websites o�er email contact options for their clients. When a user clicks on a hyperlink on the
website, it triggers the automatic opening of their computer's email client or the default mail website.
This functionality is achieved by adding a "mailto" attribute within the <a> tag.

The "mailto" attribute allows you to create a hyperlink that, when clicked, initiates the email
composition process. It speci�es the recipient's email address, along with optional queries. Here is an
example of using the "mailto" attribute:

https://bbc.com/news/world-us-canada-53788883
https://bbc.com/news/election-us-2020-53782331

Contact Us

Besides the subject, the "mailto" attribute allows you to include several other parameters or queries to
pre-�ll additional �elds in the user's email composition window. Here are some commonly used
queries:

1) reply-to: Speci�es the email address to which replies should be sent.
Example: mailto:example@example.com?reply-to=reply@example.com

2) body: Sets the initial content or body of the email.
Example:
mailto:example@example.com?body=Dear%20Sir/Madam,%0D%0A%0D%0AThank%20you%20for%
20your%20interest.

3) cc: Speci�es email addresses to be included in the carbon copy (CC) �eld.
Example: mailto:example@example.com?cc=cc1@example.com,cc2@example.com

4) bcc: Speci�es email addresses to be included in the blind carbon copy (BCC) �eld.
Example: mailto:example@example.com?bcc=bcc1@example.com,bcc2@example.com

5) subject: Sets the subject line of the email.
Example: mailto:example@example.com?subject=Regarding%20Your%20Inquiry

6) attachment: Speci�es a �le or multiple �les to be attached to the email.
Example: mailto:example@example.com?attachment=file1.pdf,file2.jpg

In HTML attributes, a blank space usually cannot be directly included. Instead, we use "%20" to
represent a space. When rendered by the browser, "%20" is displayed as a blank space.

Download Files

Have you ever encountered a website that initiates the download of �les upon clicking a link? Well,
achieving that is quite straightforward. You can implement the following code. Users then can simply
click on the link on the page to initiate the download of the speci�ed �le or folder!

Download Sample Art

By default, the �le will be downloaded with its original �le name. However, you can specify a di�erent
name for the downloaded �le by setting the download attribute value, in the following case,
“portfolio_john.png”. Therefore, when downloaded, the �le will be saved with the name
"portfolio_john.png" in the user's local directory on their computer.

Download Sample Art

Since the download attribute is primarily intended for downloading resources that are located within
the same domain as your web page, it is generally restricted from downloading resources that are
located outside of your web page's domain due to security concerns. This is known as the "same-origin
policy" enforced by web browsers to prevent unauthorized access to resources.

HTML bookmark

An HTML bookmark is a hyperlink that references a speci�c section or element within a web page. To
create a bookmark, you assign a unique "id" attribute to the desired destination.

First, let's make our web page very lengthy by adding random text content. This can be achieved by
including paragraphs, headings, or any other HTML elements with text inside them. For example:

<h2>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum convallis

ipsum vel mi fringilla, id aliquet nisl rhoncus. Suspendisse tristique tincidunt

neque, eu pulvinar orci tincidunt at. Ut tristique quam mi, sit amet iaculis elit

interdum eget. Donec cursus justo eu leo condimentum consequat. Aenean at fringilla

quam. Quisque sed volutpat dolor. Vestibulum maximus felis at sagittis interdum.

Vivamus dignissim metus id mi scelerisque, sit amet consectetur turpis venenatis.

Maecenas iaculis mauris urna, id tristique eros rutrum eu. Cras pretium mi nec diam

elementum, non tincidunt lacus commodo. Sed consequat luctus turpis, ut fermentum

neque aliquet vel. In consequat gravida tellus, id aliquam purus volutpat id. Sed

congue urna at velit sagittis, nec finibus sem ultricies. Mauris gravida, odio a

consectetur viverra, nisl augue bibendum nunc, eu aliquam arcu enim et enim. Quisque

quis tempor risus. Sed eu est vel ipsum eleifend ullamcorper. Integer volutpat nulla

eu arcu efficitur, vel fringilla tellus auctor. Nunc sed velit ut lectus dapibus

interdum. Maecenas auctor quam sed felis volutpat, non interdum elit efficitur. Sed

consequat lobortis elementum. Fusce eget enim et lectus egestas iaculis sed et lectus.

Donec pellentesque ullamcorper purus. Integer id justo elit. Nulla convallis dui vel

tincidunt fringilla. Vivamus quis lacus vitae enim efficitur fringilla. Nunc vitae

magna a felis rhoncus facilisis vitae non tortor. Duis vel dolor eget ante tincidunt

pretium at id lectus. Morbi malesuada turpis non consectetur finibus. Nullam nec ex

sed metus dignissim sollicitudin.</h2>

Note: Lorem Ipsum is commonly used as a placeholder text in web design and typesetting. It is used as
a temporary �ller when the actual content is not yet available or �nalized.

Next, we'll create a new paragraph at the bottom of the page after the aforementioned long paragraph
and assign it an ID. For instance:

<p id="lastParagraph">This is the new paragraph at the bottom of the page.</p>

Afterward, let's create a hyperlink at the top of the page before the lengthy content that jumps to the
last paragraph when clicked. The code to achieve this will appear as follows:

Jump to the last paragraph

By using the href attribute and specifying the value as "#bottom-paragraph", we create a link that
points to the paragraph with the corresponding ID. When the hyperlink is clicked, the browser will
jump to the paragraph with the "bottom-paragraph" ID.

Hurray! How exciting it is to �nally develop something interactive on your web page! Test it out
whether it would jump to the bottom of the page when clicking the link.

Images

Images play a crucial role in modern web development. They go beyond just adding visual appeal; they
provide context and contribute to an interactive browsing experience. It's crucial to select the right
images that align with the style and direction of our website. We can even make our website come alive
and create a captivating experience for our visitors by doing so. Now, let's explore how we can enhance
our website by adding some vibrant images.

However, before adding images to our web page, we �rst need to understand the major types of images.

On the web, there are four primary types of images commonly used: JPEG, PNG, GIF, and SVG. Each
image type has its own advantages and speci�c purposes, and the choice of image type should be based
on the requirements of the web page.

JPEG

JPEG �les are commonly used for photographs due to their ability to achieve high compression ratios,
resulting in small �le sizes. However, it's important to keep in mind that JPEG is a lossy �le format.
This means that during compression, some image data is lost, which can lead to a slight decline in
image quality. For this reason, JPEGs may not be the best choice for images that require precise details
or crisp edges, such as logos.

Additionally, JPEG �les do not support an alpha channel, which is responsible for storing information
regarding transparency in an image. This limitation means that JPEGs cannot have transparent
backgrounds or overlay seamlessly on top of other elements on a web page.

GIF

GIF �les are commonly used for logos and animations. They have the advantage of providing small �le
sizes and the ability to create animated sequences. Unlike JPEG, GIF is a lossless format, which means
that no image data is lost during compression. This makes GIFs suitable for images that require precise
details and sharp edges, such as logos. GIFs also support animations, which can enhance the dynamic
nature of visual content.

Another advantage of GIFs is their support for transparency. They can have areas of the image that are
transparent, allowing them to blend seamlessly with di�erent backgrounds. However, one limitation of
GIFs is their color palette. They are limited to a maximum of 256 colors, which may not be su�cient
for complex images like photographs that require a wide range of colors and shades. GIFs are better
suited for images with fewer colors, such as simple line drawings or graphics with limited color
variations.

PNG (PNG-24)

PNG �les are a relatively newer image �le type that o�ers several advantages over GIFs and JPEGs. Like
GIFs, PNGs are a lossless format, meaning they preserve the original quality of the image without any
loss of data during compression. PNGs also support varying levels of transparency, whereas GIFs only
support binary transparency, meaning each pixel can either be fully transparent or fully opaque.
Additionally, PNGs have a wider color range compared to GIFs and can display millions of colors,
including full-color images with gradients and shades, making them suitable for photographs and other
detailed visuals. However, it's worth noting that PNGs do not support animations as GIFs do.

On the downside, PNG �les tend to have larger �le sizes compared to JPEGs and GIFs. This can
impact website loading times, especially when using multiple or large PNG images. Therefore, it's
important to consider the trade-o� between image quality and �le size when we decide to use PNGs.

SVG

SVG �les are gaining popularity among web designers for their unique qualities. Unlike JPEG, PNG,
and GIF, which are raster �le formats, SVG �les are vector-based. This distinction brings several
advantages, notably their ability to scale in�nitely without losing quality and their remarkably small �le
sizes. The in�nite scalability of SVG �les means they can be resized in any ways without sacri�cing

sharpness or detail. This makes SVGs ideal for icons, logos, and simple graphics that need to adapt to
various screen sizes and resolutions. Moreover, SVG images are created using XML-based markup
(literally code), allowing us to manipulate and customize them directly on our websites. This means we
can modify the colors, shapes, and other visual elements of an SVG without the need for dedicated
photo editing software.

The concern of image �le sizes

When incorporating images into your web page, we must be mindful of their impact on the
page-loading speed. If your page is taking too long to load, you might consider removing some of the
unnecessary images. Another consideration is the size of the images, since large �le sizes can
signi�cantly slow down the page-loading process. There are various online tools available that can help
you compress images e�ectively, such as https://imagecompressor.com/.

Finding the right balance between media-rich content and optimal page-loading times has been a
constant challenge for modern web developers. It requires careful analysis and �ne-tuning. However,
when you manage to strike that sweet spot where your web page loads quickly while still delivering a
visually engaging experience, it can add an extra sense of accomplishment to your web design journey.

Image Syntax

To display an image on a website, we utilize the tag. The syntax for using this tag is as follows:

The tag is considered an empty tag, which means it doesn't require a closing tag like .
Instead, it relies on attributes to provide information. The src attribute is used to specify the location
of the image you want to display. Just like with the link tag, you can use either relative or absolute paths
in the src attribute. When specifying the image location, it is essential to include the �le extension at
the end, such as png, jpg, or gif, to indicate the image �le type.

The alt attribute is used to provide alternative text for an image. This text serves as a fallback when the
image cannot be displayed. This is important for cases where the user has a slow internet connection,
the browser encounters an issue in loading the image, or when someone relies on a screen reader to
access the content. Additionally, search engines also rely on the alt text to understand and index the
content of the image, which can help improve the image's visibility in search results.

https://imagecompressor.com/

Image sizing

By default, an image is displayed in its original size, which is determined by its native
dimensions—dimensions set when the image was originally created. However, we have the ability to
customize the image’s size by specifying custom dimensions. This allows us to control the width and
height of the image being displayed on the web page to suit our speci�c needs. To do this, we can
provide the desired dimensions using the appropriate attributes, as shown below:

The width and height attributes are used to specify the desired size of an image on a web page. The
values for these attributes are typically given in pixels, which determine the exact dimensions of the
image. However, we can also use percentage values to make the image scale proportionally based on
the size of the browser window. For example, if we set the width attribute to "50%", it means that the
image will always be displayed at half the width of the browser window, regardless of the device or
screen size. This can ensure that the image adapts to di�erent viewing environments.

It's important to consider that when both the width and height attributes are speci�ed for an image, it
can a�ect the aspect ratio of the image. This means that if the speci�ed width and height don't match
the original image's aspect ratio, the image may appear distorted or stretched. To avoid this, it is
common practice to specify either only the width or only the height attribute while leaving the other
dimension unspeci�ed. By doing so, the unspeci�ed dimension will automatically scale proportionally
based on the image's original aspect ratio.

Image Caption

The <�gure> tag allows us to group elements together and create a separate section within our web
page. It provides a way to associate a description or caption with the content it wraps. By using the
<�gcaption> tag inside the <�gure> tag, we can speci�cally target the <�gure> element and provide a
description for the enclosed content. The appearance of the elements enclosed by the <�gure> tag
won’t be a�ected. In the following example, we utilize the <�gure> tag to wrap two images and use the
<�gcaption> tag to provide descriptive text for both images.

<figure>

<figcaption>YouTube Monetization Requirements</figcaption>

</figure>

Image Mapping

If you’re aiming to redirect users to another page upon clicking on an image, there is a quite
straightforward method you can employ. Simply wrap the tag with the <a> tag, like this:

That’s no brainer, right? However, what if you want to redirect users to di�erent pages when they click
on di�erent parts of an image? Well, an easy solution would be to utilize the <map> and <area> tags.

The <area> element is used in conjunction with the <map> element to de�ne clickable areas within an
image. The <map> element speci�es an image map, which is a collection of clickable areas (de�ned
using <area>) that correspond to speci�c regions of an image. Let's take a closer look at the following
example to see how to de�ne an image map:

<img src="https://www.w3schools.com/tags/workplace.jpg" alt="Workplace"

usemap="#workmap" width="400" height="379">

<map name="workmap">

<area shape="rect" coords="34,44,270,350" alt="Computer"

href="https://www.w3schools.com/tags/computer.html">

<area shape="rect" coords="290,172,333,250" alt="Phone"

href="https://www.w3schools.com/tags/phone.html">

<area shape="circle" coords="337,300,44" alt="Coffee"

href="https://www.w3schools.com/tags/coffee.html">

</map>

In this example, an image of a workspace is displayed using the tag. The usemap attribute is set
to "#workmap" to indicate that it should be associated with the corresponding <map> element.

Inside the <map> element, we de�ne three clickable areas using <area>. The shape attribute speci�es
the shape of the area (in this case, two rectangles and a circle), while the coords attribute de�nes the
coordinates that determine the area's boundaries. Additionally, each <area> tag includes an alt
attribute to provide alternative text for accessibility purposes, and an href attribute that speci�es the
URL to which the user should be redirected upon clicking the corresponding area.

The shape attribute speci�es the shape of an area. Here are the most common ones:

1) rect – De�nes a rectangular region
2) circle – De�nes a circular region
3) poly – De�nes a polygonal region

The coords attribute speci�es the coordinates of an area in an image map.

1) x1, y1, x2, y2 – Speci�es the coordinates of the top-left (x1, y1) and bottom-right (x2, y2) corner
of the rectangle for shape="rect"

2) x, y, r – Speci�es the coordinates of the circle center (x, y) and the radius (r) for shape="circle"
3) x1, y1, x2, y2, …, xn, yn – Speci�es the coordinates of the edges of the polygon for

shape="poly". If the �rst and last coordinate pairs are not the same, the browser will add the
last coordinate pair to close the polygon

The <picture> tag

The <picture> element is used to de�ne multiple sources for an element. It allows the browser
to choose the most appropriate source based on factors like device capabilities, screen size, or
resolution. This is particularly useful in responsive web design, where you want to ensure that multiple
images can be designed to adapt well to di�erent viewport sizes instead of having one image that is
scaled up or down based on the viewport width. To use the <picture> element, you need to include
two types of tags: one or more <source> tags and one tag within. For example:

<picture>

<source media="(min-width: 800px)" srcset="large.jpg">

<source media="(min-width: 600px)" srcset="medium.jpg">

<source srcset="small.jpg">

</picture>

The browser will look for the �rst <source> element where the media query matches the current
viewport width, and then it will display the proper image (speci�ed in the srcset attribute). The
element is required as the last child of the <picture> element, as a fallback option if none of the source
tags matches.

- The �rst <source> tag speci�es a media query of "(min-width: 800px)", meaning it will be
chosen for viewports with a width of 800 pixels or larger. It references the image source
"large.jpg" using the srcset attribute.

- The second one has a media query of "(min-width: 600px)", making it the preferred choice for
viewports with a width of 600 pixels or larger. Its corresponding image source is "medium.jpg".

- The third one doesn't have a media query, so it serves as the default option. This image source,
"small.jpg", will be used when none of the preceding media queries match the viewport.

- The tag is included as the last child of the <picture> element to serve as a fallback
option in case none of the <source> tags are suitable. The "src" attribute of the tag
speci�es the source for the fallback image ("fallback.jpg" in this example).

Tables

In the earlier days of web design, tables were commonly used as the primary layout element on web
pages. They were present on nearly every web page to organize content before the introduction of CSS,
as web designers relied heavily on tables to position various elements within cells and columns. While
the need for using tables for general web page layout now has diminished, they still hold signi�cance in
certain contexts, particularly for displaying structured data. Tables remain the preferred choice when
presenting information in a clear and organized structure. Now, let's explore how to create a table.

Table mark-up

Tables in web design are composed of headers, rows, and columns. Each rowmust have a header (even
if it is empty), and must have the same number of columns as the de�ned headers.

To construct a basic table, we begin by enclosing it within the <table> tags. Within these tags, we can
de�ne our rows. The �rst row in our table will serve as the header row, so �rst we have to create a table
row using the <tr> tag (tr literally means “table row”), as follows:

<table>

<tr>

<!-- This defines a row of the table -->

</tr>

</table>

Having created a new row within our table, we can now add column headers to this row using the
<th> tag (th means “table header”). Between the opening and closing <th> tags, we specify the text for
each header. By default, the header row is styled with bold and centered text to help provide emphasis.
While there is no strict limit on the number of columns we can add, let's consider an example where we
add three columns.

<table>

<tr>

<th>Firstname</th>

<th>Lastname</th>

<th>Date of Birth</th>

</tr>

</table>

Now that we have completed the header row, we can proceed to add our data rows. To do this, we
simply insert a new row (<tr>) immediately after the closing tag of the previous row.

<table>

<tr>

<th>Firstname</th>

<th>Lastname</th>

<th>Date of Birth</th>

</tr>

<tr>

<!-- Next row -->

</tr>

</table>

Within this row, we will be inserting our data. Since we are now working with data cells instead of
headers, we will be using the <td> tag (td means “table data”). Just like the table header tags, we place
our information between the opening and closing tags of the data cell. We can include any content we
desire within this cell, even another table if needed. Nevertheless, it's important to ensure that we have
the same number of cells as our header row, so let's add three cells again.

<table>

<tr>

<th>Firstname</th>

<th>Lastname</th>

<th>Date of Birth</th>

</tr>

<tr>

<td>Elon</td>

<td>Musk</td>

<td>06/28/1971</td>

</tr>

</table>

If we wish to include additional data rows, we can easily do so by repeating the process of adding rows
beneath existing rows.

<table>

<tr>

<th>Firstname</th>

<th>Lastname</th>

<th>Date of Birth</th>

</tr>

<tr>

<td>Elon</td>

<td>Musk</td>

<td>06/28/1971</td>

</tr>

<tr>

<td>Mark</td>

<td>Zuckerberg</td>

<td>05/14/1984</td>

</tr>

<!-- You can add more rows as needed-->

</table>

Sometimes, you may see elements such as <thead>, <tbody>, and <tfoot> being used in conjunction
with the <table> element to structure the di�erent parts of a table. While they will not a�ect the layout
of the table by default, web designers mostly utilize them to style the enclosed table rows with CSS.

Lists

Lists are widely used in web design for various purposes. In fact, many navigation bars you come across
on websites are mostly created using lists in HTML. However, the applications of lists extend beyond
navigation. They are also commonly used for image slideshows and, of course, for creating traditional
bullet point lists. Depending on our requirements, there are di�erent types of lists we can create. Let's
explore them below.

There are three main types of lists that we can use in HTML:

● Unordered lists: These are collections of items that don't have a speci�c order or sequence.
Each list item is typically marked with a bullet point by default, although the appearance can
be customized later on using CSS.

● Ordered lists:These are collections of items that do have a speci�c order or sequence. Each list
item is marked with a number that automatically increments as we add more items to the list.

● De�nition lists: These are lists where each item consists of a term or label followed by its
corresponding de�nition or description.

Unordered lists

To create an unordered list in HTML, we use the element. The opening tag is placed before
the list, and the closing tag is placed after the list. Each individual item in the list is represented
by the element, which stands for "list item". The opening tag is placed before the item's text,
and the closing tag is placed after the item's text.

Here's an example of how an unordered list is structured in HTML:

Apple

Orange

Banana

Lemon

By default, when using an unordered list () in HTML, the browser automatically adds bullet
points as visual markers for each list item (). The bullet points are part of the default rendering
style for unordered lists.

If you prefer to use a di�erent marker or remove the bullet points altogether, you can customize the list
style using CSS. With CSS, you can change the bullet point style to di�erent shapes, such as squares or
circles, or even remove them completely. However, for the purpose of this book, we will not go into
this right now.

Ordered lists

When it comes to ordered lists in HTML, the structure is quite similar to unordered lists. However,
instead of using the tag to enclose our list items, we use the tag instead. The rest of the
process remains unchanged.

Combine the ingredients in a bowl

Cream butter and sugar together

Add eggs and vanilla and beat to combine

<p>...</p>

Notice how, by default, web browsers automatically display the numbers in ascending order for each
item in the list.

OL attributes

Type attribute

It would be boring if we used numbered lists starting from 1 all day long. In fact, we have the ability to
customize how the numbering scheme is displayed in ordered lists by utilizing the type attribute on the
opening tag. Here are the available values and their corresponding numbering schemes:

● type="1": This is the default value and represents the numbering with Arabic numerals (1, 2, 3,
and so on).

● type="A": The list items will be ordered with uppercase letters (A, B, C, and so on).
● type="a": The list items will be ordered with lowercase letters (a, b, c, and so on).
● type="I": The list items will be ordered with uppercase Roman numerals (I, II, III, and so on).
● type="i": The list items will be ordered with lowercase Roman numerals (i, ii, iii, and so on).

Start attribute

In addition to customizing the numbering scheme in ordered lists, we can also specify the starting
number using the "start" attribute. By default, the numbering starts from 1, but we can change it to
any desired number. Here's an example:

<p>...</p>

<ol start="8">

Combine the ingredients in a bowl

Cream butter and sugar together

Add eggs and vanilla and beat to combine

<p>...</p>

In the above example, if we set the starting number as 8 using the "start" attribute, the list would begin
at 8 and continue to the subsequent numbers, such as 9, 10, and so on. Similarly, if we were creating an
alphabetical list using uppercase letters, it would start from the eighth letter of the alphabet, which is
"H." Hence, the list would begin with "H" and proceed to "I," "J," and beyond, depending on the
number of list items.

Description lists

Description lists, also known as "de�nition lists," are utilized to present terms alongside their
corresponding de�nitions. To construct a de�nition list, we make use of three tags: the encompassing
<dl> tag that de�nes the description list, the <dt> tag for the term or name, and �nally, the <dd> tag
for the de�nition. The structure of the list closely resembles the previous two lists, but for a de�nition
list, we begin with the <dt> tag (term), followed by the <dd> tag (de�nition), and then proceed to the
next pair of <dt> and <dd> tags. The code should appear as follows:

<dl>

<dt>Happy</dt>

<dd>feeling or showing pleasure or contentment.</dd>

<dt>Frown</dt>

<dd>a facial expression indicating disapproval, displeasure, or concentration,

characterized by a furrowing of one's brows.</dd>

</dl>

When you view this list in a browser, the de�nition will be displayed below its corresponding term,
indented by one tab space from the left. It's worth mentioning that you are not restricted to using only
one de�nition per term. You can include multiple de�nitions for the respective term by adding
additional <dd> elements below the existing <dd> element.

iFrames

iFrames provide a way to embed the content of another web page within our web page. This means we
can display the contents of another website (whether it be our other pages or completely external
websites) on our own web page. Note that certain popular websites like google.com and facebook.com
have restrictions in place that prevent their content from being displayed within iFrames.

To achieve this, we can use the following code:

<iframe src="http://www.example.com"></iframe>

If you'd like to customize the dimensions of the iframe, similar to how we did with images, you can
include the width and height attributes within the <iframe> tag. For example:

<iframe src="http://www.example.com" width="250px" height="160px"></iframe>

Embed

YouTube

An iFrame can be particularly useful for embedding YouTube videos or Google Forms onto your web
pages. To include a YouTube video, go to the YouTube video you want to embed and right-click on the
video player. Select the option "Copy embed code" from the context menu.

The HTML code for embedding the video will be automatically copied to your clipboard. You can
then paste it into your web page's HTML code, typically within the <body> section. This will allow
the YouTube video to be displayed directly on your web page. You can always adjust the parameters
and attributes accordingly.

Google Forms

You can also include Google Forms in iFrames. After creating a Google Form, click on the "Send"
button in the Google Forms editor. In the options that appear, click on the embed icon (<>). Copy the
provided HTML code for embedding the form. Then simply paste the copied code into your HTML
document at the desired location.

Google Maps

Have you ever wanted to display your location on a map directly on your web page without having to
take a screenshot of the map and use it as an image? You can do so by embedding Google Maps. It will
provide a much more interactive experience for users as they can explore the map, drag it, and get a
better understanding of the surroundings.

Here's how you can embed Google Maps on your web page:

Press the “Share” button and click on “Embed a map”. The following popup will display.

Copy the HTML code and paste it into your HTML document. Simple and nice, isn’t it?

Forms

Forms are almost everywhere in the digital world, appearing on websites in various forms such as
contact forms, payment information forms, and newsletter subscriptions. They serve as an integral
component of web design, facilitating user interaction and engagement. With the ability to gather
valuable information from users, forms are particularly e�ective in uses such as acquiring email
addresses for targeted communication, collecting feedback, or enabling users to initiate inquiries and
connect with the company. Setting up web forms is a rather straightforward process, making them an
ideal choice for establishing communication channels on websites. Now, let's delve deeper into their
functionality and implementation.

How forms work

Forms can be divided into two essential components: the form structure and the associated script or
logic. The form structure includes various elements such as �elds, buttons, dropdowns, text boxes, and
radio buttons, which allow users to input and submit information. On the other hand, the script or
logic is responsible for processing the submitted data, performing necessary actions, and generating a
response. Typically, this script is executed on the server-side and is often implemented using server-side
languages like PHP. While the discussion of collecting and handling form data is beyond the scope of
this book, keep in mind that PHP forms require the web page to be uploaded on a web server. The
following page from W3Schools should likely be able to get you started and guide you in that aspect:
https://www.w3schools.com/php/php_forms.asp.

Creating a form

You can create a form using the <form> element, which serves as a container for all the form-related
content. This content includes various elements like buttons and input �elds, although it can also
incorporate additional elements such as headings and paragraphs. It is crucial to note that nesting one
form inside another is not possible, as it would disrupt the proper functioning of a form.

Form actions

The action attribute is used to specify the desired action to be performed by the browser when the user
submits the form. Its value should indicate the location of the script that will be executed upon
submission. For instance, it could be something like "process-form.php" or "submit.php".

<form action="/scripts/contact.php">

<!-- Form elements -->

</form>

https://www.w3schools.com/php/php_forms.asp

Form method

When creating a form, you specify both the method and action attributes. The method attribute
determines how the form data should be transferred to the destination address speci�ed in the action
attribute. There are two possible methods: GET and POST.

<form action="/scripts/contact.php" method="GET"></form>

GETmethod

The GET method, which is the default method for forms, sends the form data through the URL. The
information entered in the form will be appended to the URL as query parameters, which can then be
interpreted by the script speci�ed in the action attribute. Here's an example:

Suppose we have a form with the action attribute set to "contact.php" and two input �elds, "�rstname"
and "lastname." If a user enters "Ian" as the �rstname and "Cheung" as the lastname, the resulting URL
would look something like this:

https://www.iancheung.dev/contact.php?�rstname=Ian&lastname=Cheung

In the above example, the "contact.php" script will receive the values of the �rstname and lastname
variables as "Ian" and "Cheung" respectively. The script can then process this information and perform
the actions according to the PHP code, returning a result based on the provided data.

POSTmethod

The POST method is an alternative method for sending form data where the information is not visible
in the URL. It is commonly used when dealing with sensitive data like passwords and credit card
details. Unlike the GET method, the POST method sends the form data privately within the body of
the HTTP request rather than appending it to the URL.

The enctype Attribute

The enctype attribute is used to specify the encoding type for sending the form data to the web server.
By default, the enctype attribute is set to "application/x-www-form-urlencoded", which is suitable for
most form submissions. However, if your form allows users to upload �les to the web server, you
should set the enctype to "multipart/form-data". Additionally, if you intend to send the form data to
an email address, you can set the enctype to "text/plain". This is useful when you want the form data to
be sent as plain text in the email.

https://www.iancheung.dev/contact.php?firstname=Ian&lastname=Cheung

Target attribute

The target attribute in a form is similar to the target attribute used in <a> tags. By default, when a form
is submitted, the server executes the script action within the same tab. However, if you want the form's
action to be performed in a new tab, you can set the target attribute to "_blank".

Input �elds

1) <input type=“text”>
This input element creates a single-line text box that allows users to input various information
such as names, addresses, comments, and more.

2) <input type=“password”>
Similar to the text input, this creates a single-line input box. However, the key di�erence is that
the characters entered by the user will be hidden and displayed as dots on the user’s screen.
This type is commonly used for password �elds to enhance security and protect sensitive
information from being displayed.

3) <input type=“submit”>
This input element generates a button speci�cally designed for submitting a form. When
clicked, the browser sends the form's information back to the server by executing the script
speci�ed in the form's action attribute. If the "value" attribute is not de�ned, the button will
display the default text set by the browser, which in Chrome’s case, is "Submit”.

4) <input type=“reset”>
This input element creates a button that allows users to clear all the inputted data in ALL �elds
of the form. Similar to the submit button, if the "value" attribute is not de�ned, the button will
display the default text set by the browser, such as "Reset" in Chrome.

<form method="POST">

<input type="text">

<input type="password">

<input type="submit" value="Login">

<input type="reset" value="Clear">

</form>

5) <input type=“button”>
This input element creates a plain button that is typically used to execute JavaScript code.

<form method="POST">

<input type="text">

<input type="button" value="Previous Page" onclick="history.go(-1);">

<input type="button" value="Next Page" onclick="history.go(1);">

</form>

In this example, when users click the "Previous Page" button, the browser executes the
JavaScript code (which is out of scope of this book) and navigates the user back to the previous
page. Similarly, clicking the "Next Page" button takes the user to the next page.

Please note that if you intend to submit or reset the form, it is important to use the submit or
reset button speci�cally, instead of this regular type of button.

6) <input type=“radio”>
This input type creates a smaller circle that users can click on to select an option. Unlike
checkboxes, users can only choose one option at a time. Once an option is selected, it cannot be
deselected, meaning the user must choose one and only one option.

<form method="POST">

<input type="radio">True

<input type="radio">False

<input type="submit">

</form>

7) <input type=“checkbox”>
This input element creates a small box that users can tick to select one or more options. Unlike
radio buttons, checkboxes allow users to choose multiple options if desired.

<form method="POST">

<input type="checkbox">Option One

<input type="checkbox">Option Two

<input type="checkbox">Option Threee

<input type="submit" value="Hand in">

<input type="reset" value="Remove submission">

</form>

8) <input type=“hidden”>
Hidden �elds are not visible in the form, but their values are still sent to the web server. They
are used to transfer information that doesn't require user input but needs to be sent to the back
end.

<form method="POST">

<input type="text" name="name">

<input type="hidden" name="customID" value="69420">

<input type="submit">

</form>

9) <input type=“�le”>
The �le input type allows users to upload �les to the web server. When using this �eld, the
form's method attribute must be set to "POST", and the character set (enctype) of the form
must be set to "multipart/form-data". Additionally, you can enable multiple �le uploads by
adding the "multiple" attribute to the tag.

10)<input type=“email”>
This input type creates a single-line text box speci�cally designed for inputting email addresses.
If the browser detects that the input doesn't match the email address pattern, it will alert the
user to re-enter the email address. However, note that the email �eld only veri�es the format of
the input but doesn't check if the email address actually exists.

If you want to allow users to input multiple email addresses separated by a common symbol
(e.g., example@hotmail.com, example@gmail.com), you can also include the "multiple"
attribute mentioned earlier.

Additionally, if you wish to set a pattern restriction for email addresses, you can use the
"pattern" attribute. For example, pattern=".+@gmail.com" restricts the input to email addresses
ending with "@gmail.com".

<form method="POST">

<input type="text" name="name">

<input type="email" pattern=".+@gmail.com">

<input type="submit">

</form>

Upon clicking the submit button, a pop-up message will show up to notify the user regarding
the required format.

11)<input type=“url”>
It creates a single-line text box for the use of inputting an URL.When a user inputs something
which is not an URL, the browser will display an alert box to remind the user to re-enter it
again. If you wish to only allow website URLs starting with https://, for example, you can use
the pattern attribute, like pattern=“https://.*”.

12)<input type=“search”>
This input type is technically identical to <input type="text"> as it creates a single-line text box.
However, the styling of the text box may vary depending on the browser you are using.

13)<input type=“number”>
This input type creates a �eld for users to enter a numeric value. It only allows input of
numbers. An additional attribute that can be used with this input type is the "step" attribute.
For example, by setting step="3" in the <input> tag, the number value will increment or
decrement by 3 when the up or down button is pressed. The "max" and "min" attributes, not
maxlength or minlength, are used to de�ne the maximum and minimum allowed values. To set
the initial value displayed when the page loads, you can use the value attribute, for example,
value="0".

<form method="POST">

<p>Guess my odd number:</p>

<input type="number" min="0" max="100" step="2" value="1">

<input type="submit">

</form>

14)<input type=“tel”>
The "tel" value is used for inputting phone numbers. However, it does not validate whether the
entered phone number is valid or not, as phone number patterns can vary across di�erent
countries or regions. In the following example, we can use the pattern, placeholder, and title
attributes to set the phone number format, provide a hint text in the �eld, and display an alert
message when the entered information does not match the requirement. An example is listed
below:

<form method="POST">

<p>Enter your telephone number:</p>

<input type="tel" pattern="[0-9]{4}-[0-9]{6}" placeholder="e.g.

0932-168167" title="For example: 0932-168167">

<input type="submit" value="Call">

</form>

15)<input type=“range”>
Contrary to the title, this input type does not input two numbers within a range. Instead, it
creates a slider that allows users to select a value from a prede�ned range. The minimum and
maximum values are set using the min and max attributes. The step attribute is also applicable,
de�ning the increment or decrement value when using the slider. By default, the slider is
positioned in the middle when the page loads. You can also use the value attribute to set a
speci�c initial position for the slider.

<form method="POST">

<p>Guess my number:</p>

<input type="range" min="0" max="100" step="5" value="0">

<input type="submit" value="Guess">

</form>

16)<input type=“color”>
This input type creates a �eld that allows users to choose a color. When clicking on the �eld, a
color picker pop-up window will be displayed by the browser or the computer, enabling the
user to select a color. By default, the color displayed in the �eld on the page is black. However,
if you want to set the displayed color in the �eld to red, you can use the value attribute with
value="#�0000" (you can visit https://htmlcolorcodes.com for more).

<form method="POST">

<input type="color" value="#9f9f9f">

</form>

17)<input type=“date”>
This input type creates a �eld for users to input a date.

18)<input type=“time”>
This input type creates a �eld for users to input a time.

19)<input type=“datetime-local”>
This input type creates a �eld for users to input both a date and a time.

https://htmlcolorcodes.com

20)<input type=“month”>
This input type creates a �eld for users to input a month.

21)<input type=“week”>
This input type creates a �eld for users to input a week.

22)The <textarea> tag
If you need a large box where users can input a substantial amount of text and customize its
size, you can utilize the <textarea> tag. When using <textarea>, you can specify the width and
height of the textbox. Instead of using the width and height attributes like with images, you use
the cols (columns) and rows attributes. Here's an example:

<form method="POST">

<textarea cols="30" rows="3" placeholder="Write here."> Write here…

</textarea>

</form>

Users can also drag the edges of the text area to adjust its size.

By default, the �eld inside the text area is empty. However, if you want to prepopulate the text
area with some content, you can place the desired text between the opening and closing
<textarea> tags, as shown above.

23)Drop-down menus
To create a drop-down list where users can select from a range of options, you can use the
<select> element. Here's an example:

<form method="POST">

<select name="phone">

<option value="apple">Apple</option>

<option value="samsung">Samsung</option>

<option value="oneplus">Oneplus</option>

</select>

</form>

In the above example, the <form> element wraps around the <select> element, which
represents the drop-down menu. The <select> element contains multiple <option> tags, each
representing an available choice for the user. To allow users to select multiple options from the
drop-down menu, you can add the "multiple" attribute to the <select> tag, like this:

<form method="POST">

<select name="phone[]" multiple>

<option value="apple">Apple</option>

<option value="samsung">Samsung</option>

<option value="oneplus">Oneplus</option>

<option value="asus">Asus</option>

</select>

</form>

To let the browser process the form accordingly, we will need to set the name of the drop-down
menu as a “string”, which is widely used in JavaScript, and so, we should add a [] (square
brackets) after the name of the drop-down menu. Besides, to select multiple options, you need
to press the [Ctrl] key (Cmd onMac) to select the option together.

Moreover, we can use the <optgroup> to group options together in a group. Look at the
following example:

<form method="POST">

<select name="devices">

<optgroup label="Phone">

<option value="apple">Apple</option>

<option value="samsung">Samsung</option>

<option value="oneplus">Oneplus</option>

</optgroup>

<optgroup label="Computer">

<option value="mac">MacBook</option>

<option value="windows">Windows</option>

<option value="linux">Linux</option>

</optgroup>

</select>

</form>

24)The <button> tag
In addition to using the <input> tag with the type attribute set to "submit," "reset," or
"button," you can also insert a normal button using the <button> tag within the form. Always
use the submit or reset button speci�cally, instead of the <button> tag if you intend to submit
or reset the form to avoid unintended malfunctioning.

25)The <label> tag
Some form elements have default text associated with them, such as the submit and reset
buttons mentioned earlier. However, most form elements do not have descriptive text, such as
text boxes and password �elds. In such cases, you can use the <label> tag. Here's an example:

<form method="POST">

<label for="username">Username: </label>

<input type="text" id="username">

<label for="pwd">Password: </label>

<input type="password" id="pwd">

<input type="submit">

</form>

Input attributes

1) accept=“...”
This attribute speci�es the acceptable �le formats for �le upload �elds. For example, <input
type="�le" accept="image/jpeg, image/gif"> tells the browser that only JPEG and GIF �les are
acceptable for upload.

2) autocomplete=“on”
This attribute de�nes whether the �eld should be automatically completed when the page is
loaded. Setting it to "on" enables autocomplete, while "o�" (the default) disables it.

3) autofocus
This attribute tells the browser to automatically focus on that �eld when the page is loaded.

4) checked
This attribute tells the browser to automatically check the radio or checkbox.

5) disabled
This attribute disables the �eld, preventing users from interacting with, clicking on, or typing
in it.

6) name=“example”
The name attribute speci�es the name of the input �eld. It is used in server-side languages to
identify the �eld and retrieve its value.

7) maxlength=“10” & minlength=“5”
These attributes de�ne the maximum and minimum lengths (in characters) allowed for text
input �elds.

8) width=“30px” & height=“8px”
Similar to the attributes used in images, these attributes specify the width and height of the
input �eld.

9) min=“10” & max=“30”
These attributes de�ne the minimum and maximum values for number-input �elds like
"number", "date", or "range".

10)pattern=“.+@gmail.com”
The pattern attribute sets a speci�c input pattern for the �eld. Users must input something
that matches the designated format. The example shown is for email input �elds, where users
are required to enter email addresses ending with "@gmail.com". Learn more about regular
expressions here at https://www.w3schools.com/tags/att_input_pattern.asp.

11)placeholder=“Write your name here”
This attribute sets the placeholder or "hint text" for the input �eld. The placeholder text
appears in the �eld with a gray color, providing a hint to users. When users start typing, the
placeholder text disappears.

https://www.w3schools.com/tags/att_input_pattern.asp

12) readonly
This attribute makes the �eld read-only, preventing users from modifying the inputted
information. Unlike with the disabled attribute, users can click on the element but cannot
input anything in it.

13) required
This attribute makes the �eld mandatory, requiring users to �ll it in before submitting the
form. If a user tries to submit the form without �lling in the required �eld, the browser
displays an alert to remind them.

14) size=“30”
This attribute is only applicable to text input �elds. Setting it to a speci�c value, such as
size="30", adjusts the width of the input �eld to �t approximately 30 characters. However,
users can still type more than the speci�ed size.

Grouping forms elements together

To group form elements together, the <�eldset> element can be utilized. Typically, the browser will
enclose all the form elements within the <�eldset> tag using a rectangular border. Additionally, the
<legend> tag can be added to de�ne the heading or title of the �eldset.

<form method="POST">

<fieldset>

<legend>Part One</legend>

<label for="username">Name: </label>

<input type="text" id="username">

<label for="age">Age: </label>

<input type="number" id="age" min="1" max="120" value="1">

</fieldset>

<input type="submit">

<input type="reset">

</form>

Videos

In earlier versions of HTML, the absence of <video> and <audio> tags restricted the direct embedding
of videos and audio within web pages. However, with HTML5, modern web browsers gained the
capability to handle video and audio playback natively, eliminating the need for external applications
such as Windows Media Player, QuickTime Player, or Flash. This enables web developers to seamlessly
incorporate multimedia content into their websites without relying on third-party software. The video
tag works as follows:

<video src="intro.mp4" autoplay controls muted loop preload="metadata"></video>

- src=“url”
This speci�es the URL or link to the video that should be displayed.

- controls
Including this attribute in the code enables the browser to show the built-in controls for the
video, allowing users to play, pause, and adjust the playback.

- autoplay
The browser will automatically start playing the video as soon as the page loads if this attribute
is included.

- muted
This attribute instructs the browser to mute the video's audio when the page is loaded.

- loop
The video will continuously replay when this attribute is included.

- preload=“none/metadata/auto”
The preload attribute o�ers three options: none, metadata, and auto. When set to none, the
video will not be downloaded when the page loads. Withmetadata, only essential information
about the video, such as its size and duration, will be retrieved without actually downloading
the entire video. When set to auto, the browser will decide whether to download the video,
based on factors such as the user's device and available network resources.

- height=“100px”, width=“200px”
These attributes set the width and height of the video player.

- poster=“url”
This attribute speci�es an image to be displayed before the video is downloaded or played. This
allows users to have a visual preview of the video content.

The video source tag

<video>

<source src="intro.mov" type="video/mov">

<source src="intro.mp4" type="video/mp4">

<p>The browser does not support the required file format!</p>

</video>

In order to ensure compatibility across di�erent browsers that may not support certain video �le
formats, we may need to provide multiple source options for the video. In the given example, the
browser will attempt to play the video �le "intro.mov" �rst. If the browser is unable to play that format,
it will then attempt to play "intro.mp4". If both of these formats are not supported by the browser, the
<p> element will be displayed by the browser to inform the user that the video cannot be played due to
unsupported formats. This can ensure that the video content can be accessed across di�erent browsers.

Audio

Similar to the <video> tag, we can use the <audio> tag to embed audio content in our web pages. Here
is an example:

<audio src="song.mp3" controls loop></audio>

Same to the video source section, we can set di�erent sources for the browser to choose.

<audio>

<source src="song.m4a" type="audio/m4a">

<source src="song.mp3" type="audio/mp3">

<p>The browser does not support the required file format!</p>

</audio>

Subtitles and captions

Have you ever found yourself watching a show or movie, only to encounter a scene where a character
delivers a line that is so incomprehensible that you frantically search for the remote control to rewind?
This happened to me a while ago when I was watching the climactic scene of the �lm "The King of
Staten Island" starring Pete Davidson, where his crucial line was nearly impossible to understand. I
even had to rewind the scene three times and eventually resort to enabling subtitles in order to �nally
grasp his words.

Undoubtedly, the utilization of subtitles and captions has become increasingly prevalent in various
forms of media. Nearly 57 percent of the respondent in a poll by Vox said that they use subtitles, while
just 12 percent said they generally don’t. Therefore, we have to consider adding captions to our
multimedia content on our web page if we choose to add some.

Luckily, the <track> element can be employed to specify external timed text tracks for media elements
such as <video> or <audio>. It is a common practice for incorporating subtitles, captions, or any other
textual information associated with the media content on a web page. For example:

<video width="320" height="240" controls>

<source src="forrest_gump.mov" type="video/mov">

<source src="forrest_gump.mp4" type="video/mp4">

<track src="subtitles_en.vtt" kind="subtitles" srclang="en" label="English">

<track src="subtitles_no.vtt" kind="subtitles" srclang="no" label="Norwegian">

</video>

Please note that tracks must be formatted in WebVTT format (.vtt �les). To learn more about the
syntax and formatting requirements of WebVTT subtitle �les, I recommend visiting the following
resource: https://developer.mozilla.org/en-US/docs/Web/API/WebVTT_API.

The <details> tag

Have you ever come across a triangular button on a web page that allows you to toggle the visibility of
certain text? If you have, you might have wondered whether you need to use JavaScript or other
programming languages to achieve this. Fear not, beecause with just a straightforward HTML tag
called <details>, you can achieve this e�ect with one simple tag.

<h1>The details element</h1>

<details>

<summary>Google Docs</summary>

<p>Google Docs is an online word processor that lets you create and format

documents and work with other people.</p>

</details>

<p>Note: The details element is not supported in Edge (prior version 79).</p>

https://developer.mozilla.org/en-US/docs/Web/API/WebVTT_API

Once you click on the triangular button, the hidden content will be revealed.

The division tag

The <div> tag serves as a versatile tool for grouping and organizing various HTML elements. It acts as
a container, allowing you to group a speci�c set of elements together, making it easier to apply styles
and manipulate them using CSS and JavaScript. It is considered a non-semantic HTML tag since it
does not inherently convey any meaning about its content, but rather a structural element that aids in
organizing and targeting elements e�ciently.

<!DOCTYPE html>

<html>

<head>

<style>

div {

border: 5px solid red;

background-color: lightblue;

text-align: center;

}

</style>

</head>

<body>

<h1>The div element</h1>

<div>

<h2>This is a heading in a div element</h2>

<p>This is some text in a div element</p>

</div>

<p>This is some text outside the div element.</p>

</body>

</html>

Perhaps this is one of the most complicated and longest chunks of code you’ve ever seen so far in this
book. So let's break it down step by step. First, we have the <style> tag, which encompasses all the CSS
rules. We have de�ned the styles for the <div> element, setting a 5-pixel red border, a light blue
background color, and center-aligned text. Moving on, we encounter a <div> element that wraps
around the <h2> and <p> elements, creating a group. Consequently, this div, which contains the two
elements within, will adopt the speci�ed style.

The span tag

The <div> tag certainly proves useful, doesn't it? However, a minor inconvenience arises—browsers
automatically add line breaks before and after the <div> element. Hence, to wrap elements inline
without adding line breaeks before and after them, we need to use the trusty tag. Just like the
<div> tag, the tag is also a non-semantic HTML tag. Allow me to demonstrate:

<!DOCTYPE html>

<html>

<head>

<style>

div {

border: 5px solid red;

background-color: lightblue;

text-align: center;

}

</style>

</head>

<body>

<h1>Here's a title</h1>

<p>This text will be <span style="text-decoration:

overline;">overlined for sure!</p>

</body>

</html>

In this given example, you can observe the tag enclosing the text "overlined". Within the
 tag, we include a CSS style attribute specifying the text-decoration to be overlined. The
tag can be used inline throughout the document. However, always remember to employ the <div> tag
instead of the tag when it comes to wrapping a section of content.

Other section wrappers

There are many more semantic elements introduced in HTML5 to provide better structure and
meaning to the content. They help organize the document and convey the purpose of di�erent
sections. Here are some examples:

● <article> represents a self-contained article
● <aside> is for content tangentially related to the main content
● <footer> represents the footer section of a document or section
● <header> represents the introductory content or header of a document or section
● <main> represents the main content of a document
● <nav> is for navigation elements
● <section> represents a standalone section or group of content

The <meter> and <progress> tag

The <meter> element represents a scalar measurement within a known range. It's typically used to
display values such as disk usage, completion progress, or voting results. It’s always a good habit to
include the <label> tag for each <meter> element. The max attribute speci�es the total amount of
work required for the task, with a default value of 1. The value attribute indicates the amount of the
task that has been completed. If the browser does not support the <meter> tag, the text enclosed
between the opening and closing <meter> tags will be displayed. Here is an example:

<label for="disk_c">Disk usage C:</label>

<meter id="disk_c" value="2" max="10">2 out of 10</meter>

<label for="disk_d">Disk usage D:</label>

<meter id="disk_d" value="0.6">60%</meter>

However, it is important to note that the <meter> tag should not be used to indicate progress, such as
in a progress bar. For progress bars, the <progress> tag should be used instead.

<label for="file">Downloading progress:</label>

<progress id="file" value="32" max="100"> 32% </progress>

Di�erent browsers may render these tags di�erently, as with any other HTML tags. You can always
customize the appearance later, such as color or size, using CSS.

The <dialog> tag

The <dialog> tag is used to de�ne a dialog box or subwindow on a web page. It is typically displayed in
the center of the page with a border around it, although it varies across di�erent browsers. This
element simpli�es the creation of popup dialogs and modals, particularly when combined with
JavaScript. For now, let's explore how to create a static popup modal that appears when a page is
loaded.

<dialog open>This is an open dialog window</dialog>

The open attribute speci�es that the dialog element is active and should be displayed.

However, if you are more advanced, have experience with JavaScript, and would like to delve deeper, I
highly recommend reading this article by the Mozilla Developer Network (MDN):
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/dialog. It provides comprehensive
information and guidance on utilizing the <dialog> element with JavaScript to create interactive and
dynamic dialog boxes and modals.

Special characters/symbols

In HTML, there are special entities that represent various symbols or characters. These entities allow
us to display special characters on web pages without con�icting with the HTML syntax. Some of the
commonly used entities include:

Symbols Name entities Special entities

< (less than symbol) < <

> (greater than symbol) > >

(blank character)

© (copyright symbol) © ©

Memorizing all the special symbols and their corresponding entities in HTML can be challenging.
Fortunately, there are online resources available to help us easily �nd and reference these entities when
needed. One such resource is the website https://entitycode.com/.

Other HTML attributes

Classes

The class attribute is used to specify one or more class names for an HTML element. It is primarily
used to associate elements with styles de�ned in a style sheet. However, the class attribute can also be
utilized by JavaScript to target and manipulate HTML elements that have a speci�c class.

An element can have multiple classes assigned to it. To assign multiple classes, you separate them using
a space character. For example, the <p class="important active green"></p> element has three classes:
"important," "active," and "green." Moreover, a class name can be used by multiple elements, meaning
multiple elements can share the same class.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/dialog
https://entitycode.com/

Example:

<!DOCTYPE html>

<html>

<head>

<title>My First Webpage</title>

<style>

.intro {

color: blue;

}

.important {

color: green;

}

</style>

</head>

<body>

<h1 class="intro">Header 1</h1>

<p>A paragraph.</p>

<p class="important">Note that this is an important paragraph.</p>

<p class="important">This is also an important paragraph. :)</p>

</body>

</html>

For the purpose of this book, we will go deep into selecting speci�c elements with classes in CSS and
JavaScript.

IDs

In a previous section of this book, we brie�y discussed the usage of IDs, speci�cally in relation to
HTML bookmarks. In fact, the id attribute serves the purpose of assigning a unique identi�er to an
HTML element, requiring the assigned value to be unique within the HTML document (only one
element can have that ID). Similar to the class attribute, the id attribute primarily functions as a means
to reference a speci�c style de�ned in a CSS stylesheet and allows JavaScript to manipulate the element
associated with the given ID.

Example:

<!DOCTYPE html>

<html>

<head>

<title>My First Webpage</title>

<style>

.important {

color: green;

}

#superior {

font-size: 30px;

}

</style>

</head>

<body>

<p>A paragraph.</p>

<p class="important">Note that this is an important paragraph.</p>

<p class="important" id="superior">But this is BOTH an important and superior

paragraph!</p>

</body>

</html>

Contenteditable

The contenteditable attribute determines whether the content of an element can be edited by the
user. When applied to an element, such as a text element (<h1> or <p>), the user is able to modify its
content as if it were a text box. It accepts either "true" or "false" to enable or disable editing, respectively.
For instance:

<h1 contenteditable="true">This is a totally normal header</h1>

Spellcheck

The spellcheck attribute speci�es whether the spelling and grammar of an element should be checked.
Similar to contenteditable, it can be enabled or disabled by setting its value to either "true" or "false".
Only the following can be spellchecked:

- Text values in input elements (not password)
- Text in <textarea> elements
- Text in elements with contenteditable=“true”

<textarea>tis areea is digsitng</textarea> <!-- With spellcheck -->

<textarea spellcheck="false">tis areea is digsitng</textarea> <!-- No spellcheck -->

As you can see, when the spellcheck attribute is set to "true", modern web browsers typically provide
visual feedback to indicate misspelled words. This feedback is commonly displayed as dotted red lines
underneath the incorrectly spelled words.

Translate

In many browsers, there are automatic translation functions that activate when a user visits a website
containing text in a language di�erent from their default language. However, there may be instances
when you want users to view the text in its original language. This is where the translate attribute
comes in handy. You can determine whether the content within should be subject to browser
translation using this attribute. Instead of using "true" or "false," the translate attribute accepts values
of "yes" or "no" to enable or disable translation, respectively. For example,

<p translate="yes">這個能被翻譯</p> <!-- this can be translated -->

<p translate="no">這個不能被翻譯</p> <!-- this cannot be translated -->

When encountering foreign language content, your browser may prompt you to translate it to your
default language or even automatically translate it. If a user chooses to translate, the original text will be
visible for elements with the translate attribute set to "no", as shown below.

Draggable

The draggable attribute allows an element to be draggable by the user. By setting its value to "true" or
"false," dragging functionality can be enabled or disabled, respectively. One common use case is to
prevent users from downloading images by dragging them to their desktop folder from the web page.
This is achieved by setting draggable="false" on the tag. Here's an example:

Hidden

When the hidden attribute is present on an element, it indicates that the element is not currently
relevant or should not be displayed by browsers. Elements with the hidden attribute speci�ed will not
be rendered on the page. This attribute is particularly useful when you want to hide an element until a
speci�c condition is met, such as selecting a checkbox. At that point, a JavaScript program could
remove the hidden attribute, making the element visible (JavaScript is, again, out of the scope of this
book). For instance:

<p hidden>This paragraph should be hidden.</p>

<p>This is a visible paragraph.</p>

Language

The lang attribute speci�es the language of the content within an element using a language code, such
as "en" for English or "es" for Spanish. You can refer to a list of language codes at
https://www.w3schools.com/tags/ref_language_codes.asp. Di�erent languages may have speci�c
character restrictions or require di�erent fonts for proper rendering. Here's an example written in
Traditional Chinese that changes font when the lang attribute is applied.

Without the lang attribute:

<p>早上好，今天天氣怎麼樣？</p>

With the lang attribute:

<p lang="zh-HANT">早上好，今天天氣怎麼樣？</p>

https://www.w3schools.com/tags/ref_language_codes.asp

Conclusion

Congratulations! You have successfully mastered the fundamentals of HTML, including some
lesser-known yet highly useful tags. Now, it's time to put your knowledge into action and create your
own web page, incorporating as many elements as possible. Choose a topic that interests you, and let
your creativity �ow as you design your page. Start by adding a title to your web page, utilizing header
tags for a proper site structure. Enhance your page with images, lists, iframes, and any other elements
we have covered throughout this book. Feel free to explore and experiment with di�erent elements!

Up until now, our web pages have been limited to local access only, meaning they can only be viewed
on our own computers. But what if we want to share our fabulous creations with the rest of the world?
Fortunately, there are numerous free options available for hosting websites online. One such option is
Replit, a collaborative browser-based Integrated Development Environment (IDE). With Replit, you
can easily assemble a simple HTML/CSS website using its awesome editor. Visit https://repl.it and
create an account if you haven't done so already. Once you're logged in, create a new "repl" by selecting
the "HTML, CSS, JS" option as your preferred language. Feel free to name your repl whatever you like.

Now, you can add the code you've written in your local index.html �le to the repl. Simply paste your
code into the editor. To see your website in action, click the green "Run" button. A popup window
will display your website, or if you prefer, you can click the preview button to open it in a separate tab.
What better way to share your website than by copying the link and sharing it with your friends?
Additionally, if you're interested in hosting your website with a custom domain (a web address of your
choice), I've written a blog post that guides you through the process. You can �nd it at:
https://blog.ianbrawlstars.com/how-to-get-your-websites-online/.

Now you have the power to share your creations with the world! As we've discovered, HTML forms
the foundation of every web page. With your newfound knowledge of HTML, you can now create and
modify basic web pages. However, the journey doesn't end here. The next step in our coding adventure
involves styling our HTML pages, such as adding colors, adjusting sizes, and �ne-tuning text
formatting. We accomplish this through CSS (Cascading Style Sheets). If you're interested in diving
deeper, stay tuned for my next book, or explore online resources like w3schools.org to expand your
skills.

Peace out, and happy coding!

https://repl.it
https://blog.ianbrawlstars.com/how-to-get-your-websites-online/

